Estimating Aerosol Emissions by Assimilating Remote Sensing Observations into a Global Transport Model
نویسندگان
چکیده
We present a fixed-lag ensemble Kalman smoother for estimating emissions for a global aerosol transport model from remote sensing observations. We assimilate AERONET AOT and AE as well as MODIS Terra AOT over ocean to estimate the emissions for dust, sea salt and carbon aerosol and the precursor gas SO2. For January 2009, globally dust emission decreases by 26% (to 3,244 Tg/yr), sea salt emission increases by 190% (to 9073 Tg/yr), while carbon emission increases by ∼45% (to 136 Tg/yr), compared with the standard emissions. Remaining errors in global emissions are estimated at 62% (dust), 18% (sea salt) and 78% (carbons), with the large errors over land mostly due to the sparseness of AERONET observations. The new emissions are verified by comparing a forecast run against independent MODIS Aqua AOT, which shows significant improvement over both ocean and land. This paper confirms the usefulness of remote sensing observations for improving global aerosol modelling.
منابع مشابه
Retrieving global aerosol sources from satellites using inverse modeling
Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distri...
متن کاملA global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the re...
متن کاملTop-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model
[1] Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustra...
متن کاملConstraints on surface NOx emissions by assimilating satellite observations of multiple species
[1] Surface NOx emissions are estimated by a combined assimilation of satellite observations of NO2, CO, O3, and HNO3 with a global chemical transport model. The assimilation of measurements for species other than NO2 provides additional constraints on the NOx emissions by adjusting the concentrations of the species affecting the NOx chemistry and leads to changes in the regional monthly-mean e...
متن کاملThe Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote sensing fire products and field observations. For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. 5 The burnt area is estimated from the instantaneous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 4 شماره
صفحات -
تاریخ انتشار 2012